Search results for the GEO ID: GSE1988
(Click on the check boxes provided under "Select for analysis", to initiate grouping)
(Once the selection is made, click on "Add groups" in "Make groups for comparison", to make a group. Scroll down)
GSM ID
GPL ID
Select for analysis
Title
Source name
Description
Characteristics
GSM35542
GPL339
eNOS Knockout Mice-M4 Heart tissues There is cardiac dysfunction in male eNOS (-/-) with age and 50% mortality at 21M. It was of interest to investigate the gene expression profile of aged eNOS (-/-) male in comparison to (+/+) in order to explore the genetic markers and molecular mechanisms leading to heart failure. RNA was extracted from the left ventricle from male (-/-) (n=3) and (+/+) (n=4) at the age of 21M. Keywords = eNOS knockout Keywords = microarray Keywords = exercise
GSM35543
GPL339
eNOS Knockout Mice-M10 Heart tissues There is cardiac dysfunction in male eNOS (-/-) with age and 50% mortality at 21M. It was of interest to investigate the gene expression profile of aged eNOS (-/-) male in comparison to (+/+) in order to explore the genetic markers and molecular mechanisms leading to heart failure. RNA was extracted from the left ventricle from male (-/-) (n=3) and (+/+) (n=4) at the age of 21M. Keywords = eNOS knockout Keywords = microarray Keywords = exercise
GSM35561
GPL339
eNOS Knockout Mice-M140 Heart tissues There is cardiac dysfunction in male eNOS (-/-) with age and 50% mortality at 21M. It was of interest to investigate the gene expression profile of aged eNOS (-/-) male in comparison to (+/+) in order to explore the genetic markers and molecular mechanisms leading to heart failure. RNA was extracted from the left ventricle from male (-/-) (n=3) and (+/+) (n=4) at the age of 21M. Keywords = eNOS knockout Keywords = microarray Keywords = exercise
GSM35562
GPL339
Wild type Mice-M23 Heart tissues There is cardiac dysfunction in male eNOS (-/-) with age and 50% mortality at 21M. It was of interest to investigate the gene expression profile of aged eNOS (-/-) male in comparison to (+/+) in order to explore the genetic markers and molecular mechanisms leading to heart failure. RNA was extracted from the left ventricle from male (-/-) (n=3) and (+/+) (n=4) at the age of 21M. Keywords = eNOS knockout Keywords = microarray Keywords = exercise
GSM35563
GPL339
Wild type Mice-M125 Heart tissues There is cardiac dysfunction in male eNOS (-/-) with age and 50% mortality at 21M. It was of interest to investigate the gene expression profile of aged eNOS (-/-) male in comparison to (+/+) in order to explore the genetic markers and molecular mechanisms leading to heart failure. RNA was extracted from the left ventricle from male (-/-) (n=3) and (+/+) (n=4) at the age of 21M. Keywords = eNOS knockout Keywords = microarray Keywords = exercise
GSM35564
GPL339
Wild type Mice-M128 Heart tissues There is cardiac dysfunction in male eNOS (-/-) with age and 50% mortality at 21M. It was of interest to investigate the gene expression profile of aged eNOS (-/-) male in comparison to (+/+) in order to explore the genetic markers and molecular mechanisms leading to heart failure. RNA was extracted from the left ventricle from male (-/-) (n=3) and (+/+) (n=4) at the age of 21M. Keywords = eNOS knockout Keywords = microarray Keywords = exercise
GSM35566
GPL339
Wild type Mice-M158 Heart tissues There is cardiac dysfunction in male eNOS (-/-) with age and 50% mortality at 21M. It was of interest to investigate the gene expression profile of aged eNOS (-/-) male in comparison to (+/+) in order to explore the genetic markers and molecular mechanisms leading to heart failure. RNA was extracted from the left ventricle from male (-/-) (n=3) and (+/+) (n=4) at the age of 21M. Keywords = eNOS knockout Keywords = microarray Keywords = exercise
 
 
Make groups for comparisons
(2 groups will be compared at a time)
Select GSMs and click on "Add groups"
Enter the group name here:


Select expression type
Transcripts profile based on;
A. Differential status (Up/Down regulation)
B. Absolute calls (Transcribed/Not-detected)
 
Filter results by number of probes