Search results for the GEO ID: GSE9241
(Click on the check boxes provided under "Select for analysis", to initiate grouping)
(Once the selection is made, click on "Add groups" in "Make groups for comparison", to make a group. Scroll down)
GSM ID
GPL ID
Select for analysis
Title
Source name
Description
Characteristics
GSM234706
GPL8300
DC_1_CT0hr dendritic cells, control, 0 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the -catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234708
GPL8300
DC_2_CT36hr dendritic cells, control, 36 hours Human Langerhans cells produced from CD34+ stem cells cultured as described in the Growth Protocol section, were incubated for 36 hours without maturation stimulus. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the -catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234710
GPL8300
DC_3_CD1hr dendritic cells, cluster disruption, 1 hour Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the -catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234712
GPL8300
DC_4_CD3hr dendritic cells, cluster disruption, 3 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234713
GPL8300
DC_5_CD6hr dendritic cells, cluster disruption, 6 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234716
GPL8300
DC_6_CD12hr dendritic cells, cluster disruption, 12 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234717
GPL8300
DC_7_CD18hr dendritic cells, cluster disruption, 18 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234718
GPL8300
DC_8_CD36hr dendritic cells, cluster disruption, 36 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234719
GPL8300
DC_9_B1hr dendritic cells, stimulated by bacteria, 1 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234720
GPL8300
DC_10_B3hr dendritic cells, stimulated by bacteria, 3 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234722
GPL8300
DC_11_B6hr dendritic cells, stimulated by bacteria, 6 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234723
GPL8300
DC_12_B12hr dendritic cells, stimulated by bacteria, 12 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234757
GPL8300
DC_13_B18hr dendritic cells, stimulated by bacteria, 18 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234758
GPL8300
DC_14_B36hr dendritic cells, stimulated by bacteria, 36 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234760
GPL8300
DC_15_Ab6hr dendritic cells, cluster disruption and Anti E-cadherin, 6 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234761
GPL8300
DC_16_Ab12hr dendritic cells, cluster disruption and Anti E-cadherin, 12 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
GSM234762
GPL8300
DC_17_Ab36hr dendritic cells, cluster disruption and Anti E-cadherin, 36 hours Human Langerhans cells were produced from CD34+ stem cells cultured as described in the Growth Protocol section. The maturation of dendritic cells (DCs) after exposure to microbial products or inflammatory mediators plays a critical role in initiating the immune response. We found that maturation can also occur under steady state conditions, triggered by alterations in E-cadherin-mediated DC-DC adhesion. Selective disruption of these interactions induced the typical features of DC maturation including the upregulation of costimulatory molecules, MHC class II, and chemokine receptors. These events were triggered at least in part by activation of the beta-catenin pathway. However, unlike maturation induced by microbial products, E-cadherin-stimulated DCs failed to release immunostimulatory cytokines, exhibiting an entirely different transcriptional profile. As a result, E-cadherin-stimulated DCs elicited an entirely different T cell response in vivo, generating T cells with a regulatory as opposed to an effector phenotype. These DCs induced tolerance in vivo and may thus contribute to the elusive steady state “tolerogenic DCs”.
 
 
Make groups for comparisons
(2 groups will be compared at a time)
Select GSMs and click on "Add groups"
Enter the group name here:


Select expression type
Transcripts profile based on;
A. Differential status (Up/Down regulation)
B. Absolute calls (Transcribed/Not-detected)
 
Filter results by number of probes